Exercise 23

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative.

$$
f(t)=2.5 t^{2}+6 t
$$

Solution

Calculate the derivative of $f(t)$ using the definition.

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[2.5(t+h)^{2}+6(t+h)\right]-\left(2.5 t^{2}+6 t\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[2.5\left(t^{2}+2 t h+h^{2}\right)+6 t+6 h\right]-2.5 t^{2}-6 t}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(2.5 t^{2}+5 t h+2.5 h^{2}+6 t+6 h\right)-2.5 t^{2}-6 t}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 t h+2.5 h^{2}+6 h}{h} \\
& =\lim _{h \rightarrow 0}(5 t+2.5 h+6) \\
& =5 t+6
\end{aligned}
$$

The domain of $f(t)$ is $\{t \mid-\infty<t<\infty\}$, and the domain of $f^{\prime}(t)$ is $\{t \mid-\infty<t<\infty\}$. $f(t)$ and $f^{\prime}(t)$ are polynomials, so any number can be plugged into them.

